151 research outputs found

    Strong Revenue (Non-)Monotonicity of Single-parameter Auctions

    Full text link
    Consider Myerson's optimal auction with respect to an inaccurate prior, e.g., estimated from data, which is an underestimation of the true value distribution. Can the auctioneer expect getting at least the optimal revenue w.r.t. the inaccurate prior since the true value distribution is larger? This so-called strong revenue monotonicity is known to be true for single-parameter auctions when the feasible allocations form a matroid. We find that strong revenue monotonicity fails to generalize beyond the matroid setting, and further show that auctions in the matroid setting are the only downward-closed auctions that satisfy strong revenue monotonicity. On the flip side, we recover an approximate version of strong revenue monotonicity that holds for all single-parameter auctions, even without downward-closedness. As applications, we get sample complexity upper bounds for single-parameter auctions under matroid constraints, downward-closed constraints, and general constraints. They improve the state-of-the-art upper bounds and are tight up to logarithmic factors

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    Implicit Ray-Transformers for Multi-view Remote Sensing Image Segmentation

    Full text link
    The mainstream CNN-based remote sensing (RS) image semantic segmentation approaches typically rely on massive labeled training data. Such a paradigm struggles with the problem of RS multi-view scene segmentation with limited labeled views due to the lack of considering 3D information within the scene. In this paper, we propose ''Implicit Ray-Transformer (IRT)'' based on Implicit Neural Representation (INR), for RS scene semantic segmentation with sparse labels (such as 4-6 labels per 100 images). We explore a new way of introducing multi-view 3D structure priors to the task for accurate and view-consistent semantic segmentation. The proposed method includes a two-stage learning process. In the first stage, we optimize a neural field to encode the color and 3D structure of the remote sensing scene based on multi-view images. In the second stage, we design a Ray Transformer to leverage the relations between the neural field 3D features and 2D texture features for learning better semantic representations. Different from previous methods that only consider 3D prior or 2D features, we incorporate additional 2D texture information and 3D prior by broadcasting CNN features to different point features along the sampled ray. To verify the effectiveness of the proposed method, we construct a challenging dataset containing six synthetic sub-datasets collected from the Carla platform and three real sub-datasets from Google Maps. Experiments show that the proposed method outperforms the CNN-based methods and the state-of-the-art INR-based segmentation methods in quantitative and qualitative metrics

    A Mixed-Integer SDP Solution Approach to Distributionally Robust Unit Commitment with Second Order Moment Constraints

    Full text link
    A power system unit commitment (UC) problem considering uncertainties of renewable energy sources is investigated in this paper, through a distributionally robust optimization approach. We assume that the first and second order moments of stochastic parameters can be inferred from historical data, and then employed to model the set of probability distributions. The resulting problem is a two-stage distributionally robust unit commitment with second order moment constraints, and we show that it can be recast as a mixed-integer semidefinite programming (MI-SDP) with finite constraints. The solution algorithm of the problem comprises solving a series of relaxed MI-SDPs and a subroutine of feasibility checking and vertex generation. Based on the verification of strong duality of the semidefinite programming (SDP) problems, we propose a cutting plane algorithm for solving the MI-SDPs; we also introduce a SDP relaxation for the feasibility checking problem, which is an intractable biconvex optimization. Experimental results on a IEEE 6-bus system are presented, showing that without any tunings of parameters, the real-time operation cost of distributionally robust UC method outperforms those of deterministic UC and two-stage robust UC methods in general, and our method also enjoys higher reliability of dispatch operation

    Adapt On-the-Go: Behavior Modulation for Single-Life Robot Deployment

    Full text link
    To succeed in the real world, robots must cope with situations that differ from those seen during training. We study the problem of adapting on-the-fly to such novel scenarios during deployment, by drawing upon a diverse repertoire of previously learned behaviors. Our approach, RObust Autonomous Modulation (ROAM), introduces a mechanism based on the perceived value of pre-trained behaviors to select and adapt pre-trained behaviors to the situation at hand. Crucially, this adaptation process all happens within a single episode at test time, without any human supervision. We provide theoretical analysis of our selection mechanism and demonstrate that ROAM enables a robot to adapt rapidly to changes in dynamics both in simulation and on a real Go1 quadruped, even successfully moving forward with roller skates on its feet. Our approach adapts over 2x as efficiently compared to existing methods when facing a variety of out-of-distribution situations during deployment by effectively choosing and adapting relevant behaviors on-the-fly.Comment: 19 pages, 6 figure

    Understanding the structure and rheological properties of potato starch induced by hot-extrusion 3D printing

    Get PDF
    This work investigates the 3D printability of potato starch (PS). For this purpose, the structure and rheological properties of the PS-based ink under hot-extrusion 3D printing (HE-3DP) at different PS concentrations and printing temperatures were studied. PS concentration was found to determine the structure and rheological properties of the PS gel. The printing temperature was shown to influence the structural transformation of PS and closely linked to the rheological properties of the gel. PS samples of 15–25% concentration at 70 °C presented optimal printability, which showed the absence of the original granule, crystalline and lamellar structures, with the formation of a uniform and compact gel network. In this case, the rheological properties were in a suitable range for HE-3DP including G′ (615.72–1057.63 Pa), τy (89.389–263.25 Pa) and τf (490.00–1104.97 Pa), which provided the PS-based ink with smooth extrusion, excellent printing accuracy and high structural strength, suitable for applications such as food and biomedical materials
    corecore